It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The transient photocurrent is one of the key parameters of the spatial radiation effect of photoelectric devices, and the energy level defect affects the transient photocurrent. In this paper, by studying the deep level transient spectrum of a self-designed Schottky diode, the defect properties of the interface region of the anode metal AlCu and Si caused by high-temperature annealing at 150 ℃, 200 ℃ and 300 ℃ for 1200 h have been quantitatively analyzed. The study shows that the defect is located at the position of + 0.41 eV on the valence band, the concentration is 2.8
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 National Space Science Center, CAS, Beijing, China (GRID:grid.454733.2) (ISNI:0000 0004 0596 2874)
2 Beijing University of Posts and Telecommunications, Beijing, China (GRID:grid.31880.32) (ISNI:0000 0000 8780 1230)
3 Hunan University, College of Physics and Electronic Science, Changsha, China (GRID:grid.67293.39)