Full Text

Turn on search term navigation

Copyright Chilean Journal of Agricultural Research Jul-Sep 2011

Abstract

Weed suppression is one of the several benefits achieved by soil incorporation of crop residues and such suppression is believed to be allelopathic in nature. The allelopathic potential of different crop residues: viz. sorghum (Sorghum bicolor [L.] Moench), sunflower (Helianthus annuus L.), brassica (Brassica campestris L.) was evaluated in rice (Oryza sativa L.) and jungle rice (Echinochloa colona [L.] Link). Chopped crop residues were soil-incorporated alone and mixed at 6 g kg^sup -1^ soil (12 t ha^sup -1^) and compared with a control without residues. Soil incorporation of residues substantially delayed germination of jungle rice. The time to start germination, time to 50% emergence, mean emergence time, emergence index, and final germination percentage were all depressed by residue incorporation. Final germination of rice and jungle rice dropped by 11 to 15% and 11 to 27% with residue application alone and by 18 to 22% and 8 to 34% with a combination of crop residues, respectively. Residues were more suppressive to germination dynamics of jungle rice than rice. Crop residues exerted a pronounced negative influence on the shoot (25 to 100% and 14 to 44%) and root lengths (22 to 100% and 10 to 43%) of rice and jungle rice, respectively. Shoot and root dry weight of both rice and jungle rice also decreased significantly. An appreciable quantity of phenolics was recorded in soil amended with sorghum+sunflower+brassica residues. Since soil incorporation of allelopathic crop residues was detrimental to both rice germination and seedling growth, it is suggested that the time of residue application for jungle rice suppression and rice seeding time need to be adjusted so as to minimize rice crop damage.

Germination traits of rice and jungle rice were negatively influenced by crop residue incorporation (Table 1). Significant (P ≤ 0.05) delay in the time to start germination and E50 over the control was provoked by all the treatments on jungle rice. Germination was delayed by > 1 d in jungle rice while it remained unaffected for rice. The time to start germination of jungle rice was delayed to the maximum by the combined application of sunflower+brassica residues and was at par with the incorporation of only sunflower residues, sorghum+brassica residues, or a combination of all three residues (sorghum+sunflower+brassica). Combinations of crop residue incorporation exerted a marked negative influence on time needed for 50% emergence (12 to 34 and 12 to 21%) than when applied alone (1 to 11 and 11 to 14%) for rice and jungle rice, respectively. Final rice germination was suppressed by 11 to 27%. Sunflower residues incorporated alone scored 15% inhibition while combined with sorghum accounted for 27% suppression. Final germination of jungle rice dropped from 8 to 34%. Interestingly, sorghum+sunflower residues were the least effective in retarding jungle rice germination (-8%); maximum inhibition was noticed with all three crop residues, which was at par with that achieved by incorporating only sunflower and brassica residues (22 and 21%). Incorporation of only sorghum, sunflower, and brassica provided statistically similar suppression of final germination in both rice and jungle rice. In various combinations, sorghum+sunflower scored 33% followed by 25% inhibition recorded when all three residues were combined. Mean germination time (MGT) also reflected the allelopathic influence of crop residues on germination events and a significant increase over the control was recorded for both test species. A combination of sorghum+sunflower scored maximum (84%) delay in MGT for rice while a similar suppression value for jungle rice was attributed to mixing all three crop residues. Significantly (P ≤ 0.05) lower emergence index (EI) values, except for the control, were also noticed with minimum EI observed when all three residues were incorporated integratively.

[Rice, E.L.] and jungle rice root and shoot length were also significantly (P ≤ 0.05) suppressed by crop residues and various combinations thereof (Table 2). These residues were significantly reduced in the root (22 to 100and 10 to 43%) and shoot (25 to 100 and 14 to 44%) length over the control in rice and jungle rice, respectively. A combination of sorghum+sunflower+brassica recorded maximum suppression of these parameters in both test species. Shoot and root dry weight was also reduced under all treatments over the control. Among the application of residues alone, sunflower scored the maximum reduction in shoot (59 and 38%) and root (56 and 39%) dry weight of rice and jungle rice, respectively. A combination of all three residues proved to be even better in suppressing dry matter accumulation in test species. Residue incorporation led to reduced root proliferation as indicated by lower root scores compared to the control. Sunflower residues exerted a drastic influence on root score and suppressed it by 46% while its combination with brassica residues accounted for 70 and 43% inhibition in rice and jungle rice, respectively. Sorghum+sunflower+brassica residues caused 100% seedling mortality in rice while they killed up to 27% of jungle rice seedlings.

Details

Title
ALLELOPATHIC ACTIVITY OF CROP RESIDUE INCORPORATION ALONE OR MIXED AGAINST RICE AND ITS ASSOCIATED GRASS WEED JUNGLE RICE (Echinochloa colona [L.] Link)
Author
Khaliq, Abdul; Matloob, Amar; Cheema, Zahid Ata; Farooq, Muhammad
Pages
418-423
Section
RESEARCH
Publication year
2011
Publication date
Jul-Sep 2011
Publisher
Chilean Journal of Agricultural Research
ISSN
07185820
e-ISSN
07185839
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1268174069
Copyright
Copyright Chilean Journal of Agricultural Research Jul-Sep 2011