Full text

Turn on search term navigation

© 2010 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Optical imaging (OI) techniques such as bioluminescence and fluorescence imaging have been widely used to track diseases in a non-invasive manner within living subjects. These techniques generally require bioluminescent and fluorescent probes. Here we demonstrate the feasibility of using radioactive probes for in vivo molecular OI.

Methodology/Principal Findings

By taking the advantages of low energy window of light (1.2–3.1 eV, 400–1000 nm) resulting from radiation, radionuclides that emit charged particles such as β+ and β− can be successfully imaged with an OI instrument. In vivo optical images can be obtained for several radioactive probes including 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), Na18F, Na131I, 90YCl3 and a 90Y labeled peptide that specifically target tumors.

Conclusions/Significance

These studies demonstrate generalizability of radioactive OI technique. It provides a new molecular imaging strategy and will likely have significant impact on both small animal and clinical imaging.

Details

Title
Molecular Optical Imaging with Radioactive Probes
Author
Liu, Hongguang; Ren, Gang; Zheng Miao; Zhang, Xiaofen; Tang, Xiaodong; Han, Peizhen; Gambhir, Sanjiv S; Cheng, Zhen
First page
e9470
Section
Research Article
Publication year
2010
Publication date
Mar 2010
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1289429632
Copyright
© 2010 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.