Full Text

Turn on search term navigation

© 2010 Shimshek et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Aggregation and misfolded α-synuclein is thought to be central in the pathogenesis of Parkinson's disease (PD). Heat-shock proteins (HSPs) that are involved in refolding and degradation processes could lower the aggregate load of α-synuclein and thus be beneficial in α-synucleinopathies.

Methodology/Principal Findings

We co-overexpressed human A53T point-mutated α-synuclein and human HSP70 in mice, both under the control of Thy1 regulatory sequences. Behavior read-outs showed no beneficial effect of HSP70 expression in mice. In contrast, motor coordination, grip strength and weight were even worse in the α-synucleinopathy model in the presence of HSP70 overexpression. Biochemical analyses revealed no differences in α-synuclein oligomers/aggregates, truncations and phosphorylation levels and α-synuclein localization was unchanged in immunostainings.

Conclusion/Significance

Overexpressing HSP70 in a mouse model of α-synucleinopathy did not lower the toxic load of α-synuclein species and had no beneficial effect on α-synuclein-related motor deficits.

Details

Title
The HSP70 Molecular Chaperone Is Not Beneficial in a Mouse Model of α-synucleinopathy
Author
Shimshek, Derya R; Mueller, Matthias; Wiessner, Christoph; Schweizer, Tatjana; P Herman van der Putten
First page
e10014
Section
Research Article
Publication year
2010
Publication date
Apr 2010
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1289442019
Copyright
© 2010 Shimshek et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.