Full text

Turn on search term navigation

© 2007 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, et al. (2007) Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance. PLoS Biol 5(4): e92. doi:10.1371/journal.pbio.0050092

Abstract

In the hierarchy of cellular targets damaged by ionizing radiation (IR), classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR-sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II) ions and protection of proteins from oxidative modifications that introduce carbonyl groups. Conditions that inhibited Mn accumulation or Mn redox cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR-resistant and IR-sensitive wild-type bacteria, our findings support the idea that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection.

Details

Title
Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance
Author
Daly, Michael J; Gaidamakova, Elena K; Matrosova, Vera Y; Vasilenko, Alexander; Zhai, Min; Leapman, Richard D; Lai, Barry; Ravel, Bruce; Li, Shu-Mei W; Kemner, Kenneth M; Fredrickson, James K
Pages
e92
Section
Research Article
Publication year
2007
Publication date
Apr 2007
Publisher
Public Library of Science
ISSN
15449173
e-ISSN
15457885
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1292170942
Copyright
© 2007 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, et al. (2007) Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance. PLoS Biol 5(4): e92. doi:10.1371/journal.pbio.0050092