Full Text

Turn on search term navigation

© 2010 Shulman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Recent genetic studies have identified a growing number of loci with suggestive evidence of association with susceptibility to Alzheimer's disease (AD). However, little is known of the role of these candidate genes in influencing intermediate phenotypes associated with a diagnosis of AD, including cognitive decline or AD neuropathologic burden.

Methods/Principal Findings

Thirty-two single nucleotide polymorphisms (SNPs) previously implicated in AD susceptibility were genotyped in 414 subjects with both annual clinical evaluation and completed brain autopsies from the Religious Orders Study and the Rush Memory and Aging Project. Regression analyses evaluated the relation of SNP genotypes to continuous measures of AD neuropathology and cognitive function proximate to death. A SNP in the zinc finger protein 224 gene (ZNF224, rs3746319) was associated with both global AD neuropathology (p = 0.009) and global cognition (p = 0.002); whereas, a SNP at the phosphoenolpyruvate carboxykinase locus (PCK1, rs8192708) was selectively associated with global cognition (p = 3.57×10−4). The association of ZNF224 with cognitive impairment was mediated by neurofibrillary tangles, whereas PCK1 largely influenced cognition independent of AD pathology, as well as Lewy bodies and infarcts.

Conclusions/Significance

The findings support the association of several loci with AD, and suggest how intermediate phenotypes can enhance analysis of susceptibility loci in this complex genetic disorder.

Details

Title
Intermediate Phenotypes Identify Divergent Pathways to Alzheimer's Disease
Author
Shulman, Joshua M; Chibnik, Lori B; Aubin, Cristin; Schneider, Julie A; Bennett, David A; De Jager, Philip L
First page
e11244
Section
Research Article
Publication year
2010
Publication date
Jun 2010
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1292421136
Copyright
© 2010 Shulman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.