Full Text

Turn on search term navigation

© 2009 Roeth et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Tissue morphogenesis and organogenesis require that cells retain stable cell-cell adhesion while changing shape and moving. One mechanism to accommodate this plasticity in cell adhesion involves regulated trafficking of junctional proteins.

Methodology/Principal Findings

Here we explored trafficking of junctional proteins in two well-characterized model epithelia, the Drosophila embryonic ectoderm and amnioserosa. We find that DE-cadherin, the transmembrane protein of adherens junctions, is actively trafficked through putative vesicles, and appears to travel through both Rab5-positive and Rab11-positive structures. We manipulated the functions of Rab11 and Rab5 to examine the effects on junctional stability and morphogenesis. Reducing Rab11 function, either using a dominant negative construct or loss of function alleles, disrupts integrity of the ectoderm and leads to loss of adherens junctions. Strikingly, the apical junctional regulator Crumbs is lost before AJs are destabilized, while the basolateral protein Dlg remains cortical. Altering Rab5 function had less dramatic effects, not disrupting adherens junction integrity but affecting dorsal closure.

Conclusions/Significance

We contrast our results with what others saw when disrupting other trafficking regulators, and when disrupting Rab function in other tissues; together these data suggest distinct mechanisms regulate junctional stability and plasticity in different tissues.

Details

Title
Rab11 Helps Maintain Apical Crumbs and Adherens Junctions in the Drosophila Embryonic Ectoderm
Author
Roeth, Jeremiah F; Sawyer, Jessica K; Wilner, Daniel A; Peifer, Mark
First page
e7634
Section
Research Article
Publication year
2009
Publication date
Oct 2009
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1292464970
Copyright
© 2009 Roeth et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.