Full text

Turn on search term navigation

© 2011 Bansal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

High-throughput sequencing of targeted genomic loci in large populations is an effective approach for evaluating the contribution of rare variants to disease risk. We evaluated the feasibility of using in-solution hybridization-based target capture on pooled DNA samples to enable cost-efficient population sequencing studies. For this, we performed pooled sequencing of 100 HapMap samples across ∼600 kb of DNA sequence using the Illumina GAIIx. Using our accurate variant calling method for pooled sequence data, we were able to not only identify single nucleotide variants with a low false discovery rate (<1%) but also accurately detect short insertion/deletion variants. In addition, with sufficient coverage per individual in each pool (30-fold) we detected 97.2% of the total variants and 93.6% of variants below 5% in frequency. Finally, allele frequencies for single nucleotide variants (SNVs) estimated from the pooled data and the HapMap genotype data were tightly correlated (correlation coefficient > =  0.995).

Details

Title
Efficient and Cost Effective Population Resequencing by Pooling and In-Solution Hybridization
Author
Bansal, Vikas; Ryan Tewhey; LeProust, Emily M; Schork, Nicholas J
First page
e18353
Section
Research Article
Publication year
2011
Publication date
Mar 2011
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1292701173
Copyright
© 2011 Bansal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.