Full text

Turn on search term navigation

© 2012 McGaugh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: McGaugh SE, Heil CSS, Manzano-Winkler B, Loewe L, Goldstein S, et al. (2012) Recombination Modulates How Selection Affects Linked Sites in Drosophila. PLoS Biol 10(11): e1001422. doi:10.1371/journal.pbio.1001422

Abstract

One of the most influential observations in molecular evolution has been a strong association between local recombination rate and nucleotide polymorphisms across the genome. This is interpreted as evidence for ubiquitous natural selection. The alternative explanation, that recombination is mutagenic, has been rejected by the absence of a similar association between local recombination rate and nucleotide divergence between species. However, many recent studies show that recombination rates are often very different even in closely related species, questioning whether an association between recombination rate and divergence between species has been tested satisfactorily. To circumvent this problem, we directly surveyed recombination across approximately 43% of the D. pseudoobscura physical genome in two separate recombination maps and 31% of the D. miranda physical genome, and we identified both global and local differences in recombination rate between these two closely related species. Using only regions with conserved recombination rates between and within species and accounting for multiple covariates, our data support the conclusion that recombination is positively related to diversity because recombination modulates Hill-Robertson effects in the genome and not because recombination is predominately mutagenic. Finally, we find evidence for dips in diversity around nonsynonymous substitutions. We infer that at least some of this reduction in diversity resulted from selective sweeps and examine these dips in the context of recombination rate.

Details

Title
Recombination Modulates How Selection Affects Linked Sites in Drosophila
Author
McGaugh, Suzanne E; Heil, Caiti SS; Manzano-Winkler, Brenda; Loewe, Laurence; Goldstein, Steve; Himmel, Tiffany L; Noor, Mohamed AF
Pages
e1001422
Section
Research Article
Publication year
2012
Publication date
Nov 2012
Publisher
Public Library of Science
ISSN
15449173
e-ISSN
15457885
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1303896158
Copyright
© 2012 McGaugh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: McGaugh SE, Heil CSS, Manzano-Winkler B, Loewe L, Goldstein S, et al. (2012) Recombination Modulates How Selection Affects Linked Sites in Drosophila. PLoS Biol 10(11): e1001422. doi:10.1371/journal.pbio.1001422