Full text

Turn on search term navigation

© 2011 Kollara et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The cytoplasmic localization of Nuclear Receptor Coactivator 4 (NcoA4), also referred to as androgen receptor associated protein 70 (ARA70), indicates it may possess activities in addition to its role within the nucleus as a transcriptional enhancer. Towards identifying novel functions of NcoA4, we performed an in silico analysis of its amino acid sequence to identify potential functional domains and related proteins, and examined its subcellular distribution throughout the cell cycle. NcoA4 has no known or predicted functional or structural domains with the exception of an LxxLL and FxxLF nuclear receptor interaction motif and an N-terminal putative coiled-coil domain. Phylogenetic analysis indicated that NcoA4 has no paralogs and that a region referred to as ARA70-I family domain, located within the N-terminus and overlapping with the coiled-coil domain, is evolutionarily conserved in metazoans ranging from cnidarians to mammals. An adjacent conserved region, designated ARA70-II family domain, with no significant sequence similarity to the ARA70-I domain, is restricted to vertebrates. We demonstrate NcoA4 co-localizes with microtubules and microtubule organizing centers during prophase. Strong NcoA4 accumulation at the centrosomes was detected during interphase and telophase, with decreased levels at metaphase and anaphase. NcoA4 co-localized with tubulin and acetylated tubulin to the mitotic spindles during metaphase and anaphase, and to midbodies during telophase. Consistent with these observations, we demonstrated an interaction between NcoA4 and α-tubulin. Co-localization was not observed with microfilaments. These findings indicate a dynamic distribution of NcoA4 with components of the mitotic apparatus that is consistent with a potential non-transcriptional regulatory function(s) during cell division, which may be evolutionarily conserved.

Details

Title
Dynamic Distribution of Nuclear Coactivator 4 during Mitosis: Association with Mitotic Apparatus and Midbodies
Author
Kollara, Alexandra; Ringuette, Maurice J; Brown, Theodore J
First page
e22257
Section
Research Article
Publication year
2011
Publication date
Jul 2011
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1306362880
Copyright
© 2011 Kollara et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.