Full text

Turn on search term navigation

© 2011 Hadaczek et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Effective regulation of transgene product in anatomically circumscribed brain tissue is dependent on the pharmacokinetics of the regulating agent, the kinetics of transcriptional activation and degradation of the transgene product. We evaluated rapamycin-regulated AAV2-GDNF expression in the rat brain (striatum). Regulated (a dual-component system: AAV2-FBZhGDNF + AAV2-TF1Nc) and constitutive (CMV-driven) expression vectors were compared. Constitutively active AAV2-GDNF directed stable GDNF expression in a dose-dependent manner and it increased for the first month, thereafter reaching a plateau that was maintained over a further 3 months. For the AAV2-regGDNF, rapamycin was administered in a 3-days on/4-days off cycle. Intraperitoneal, oral, and direct brain delivery (CED) of rapamycin were evaluated. Two cycles of rapamycin at an intraperitoneal dose of 10 mg/kg gave the highest GDNF level (2.75±0.01 ng/mg protein). Six cycles at 3 mg/kg resulted in lower GDNF values (1.36±0.3 ng/mg protein). Interestingly, CED of rapamycin into the brain at a very low dose (50 ng) induced GDNF levels comparable to a 6-week intraperitoneal rapamycin cycle. This study demonstrates the effectiveness of rapamycin regulation in the CNS. However, the kinetics of the transgene in brain tissue, the regulator dosing amount and schedule are critical parameters that influence the kinetics of accumulation and zenith of the encoded transgene product.

Details

Title
Evaluation of an AAV2-Based Rapamycin-Regulated Glial Cell Line-Derived Neurotrophic Factor (GDNF) Expression Vector System
Author
Hadaczek, Piotr; Beyer, Janine; Kells, Adrian; Wade Narrow; Bowers, William; Federoff, Howard J; Forsayeth, John; Bankiewicz, Krystof S
First page
e27728
Section
Research Article
Publication year
2011
Publication date
Nov 2011
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1310734283
Copyright
© 2011 Hadaczek et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.