Full text

Turn on search term navigation

© 2008 Trenner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Previous studies investigated the effects of crossmodal spatial attention by comparing the responses to validly versus invalidly cued target stimuli. Dynamics of cortical rhythms in the time interval between cue and target might contribute to cue effects on performance. Here, we studied the influence of spatial attention on ongoing oscillatory brain activity in the interval between cue and target onset. In a first experiment, subjects underwent periods of tactile stimulation (cue) followed by visual stimulation (target) in a spatial cueing task as well as tactile stimulation as a control. In a second experiment, cue validity was modified to be 50%, 75%, or else 25%, to separate effects of exogenous shifts of attention caused by tactile stimuli from that of endogenous shifts. Tactile stimuli produced: 1) a stronger lateralization of the sensorimotor beta-rhythm rebound (15–22 Hz) after tactile stimuli serving as cues versus not serving as cues; 2) a suppression of the occipital alpha-rhythm (7–13 Hz) appearing only in the cueing task (this suppression was stronger contralateral to the endogenously attended side and was predictive of behavioral success); 3) an increase of prefrontal gamma-activity (25–35 Hz) specifically in the cueing task. We measured cue-related modulations of cortical rhythms which may accompany crossmodal spatial attention, expectation or decision, and therefore contribute to cue validity effects. The clearly lateralized alpha suppression after tactile cues in our data indicates its dependence on endogenous rather than exogenous shifts of visuo-spatial attention following a cue independent of its modality.

Details

Title
What Happens in Between? Human Oscillatory Brain Activity Related to Crossmodal Spatial Cueing
Author
Trenner, Maja U; Heekeren, Hauke R; Bauer, Markus; Rössner, Konstanze; Wenzel, Rüdiger; Villringer, Arno; Fahle, Manfred
First page
e1467
Section
Research Article
Publication year
2008
Publication date
Jan 2008
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1312181823
Copyright
© 2008 Trenner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.