Full text

Turn on search term navigation

Copyright Nature Publishing Group Mar 2013

Abstract

Most bioparticles, such as red blood cells and bacteria, are non-spherical in shape. However, conventional microfluidic separation devices are designed for spherical particles. This poses a challenge in designing a separation device for non-spherical bioparticles, as the smallest dimension of the bioparticle has to be considered, which increases fabrication challenges and decreases the throughput. If current methods do not take into account the shape of non-spherical bioparticles, the separation will be inefficient. Here, to address this challenge, we present a novel technique for the separation of red blood cells as a non-spherical bioparticle, using a new I-shaped pillar arrays design. It takes the shape into account and induces rotational movements, allowing us to leverage on the largest dimension, which increases its separation size. This technique has been used for 100% separation of red blood cells from blood samples in a focused stream, outperforming the conventional pillar array designs.

Details

Title
Rotational separation of non-spherical bioparticles using I-shaped pillar arrays in a microfluidic device
Author
Zeming, Kerwin Kwek; Ranjan, Shashi; Zhang, Yong
Pages
1625
Publication year
2013
Publication date
Mar 2013
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1321080179
Copyright
Copyright Nature Publishing Group Mar 2013