Full Text

Turn on search term navigation

© 2012 Hondowicz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The identification of novel T cell antigens is central to basic and translational research in autoimmunity, tumor immunology, transplant immunology, and vaccine design for infectious disease. However, current methods for T cell antigen discovery are low throughput, and fail to explore a wide range of potential antigen-receptor interactions. To overcome these limitations, we developed a method in which programmable microarrays are used to cost-effectively synthesize complex libraries of thousands of minigenes that collectively encode the content of hundreds of candidate protein targets. Minigene-derived mRNA are transfected into autologous antigen presenting cells and used to challenge complex populations of purified peripheral blood CD8+ T cells in multiplex, parallel ELISPOT assays. In this proof-of-concept study, we apply synthetic minigene screening to identify two novel pancreatic islet autoantigens targeted in a patient with Type I Diabetes. To our knowledge, this is the first successful screen of a highly complex, synthetic minigene library for identification of a T cell antigen. In principle, responses against the full protein complement of any tissue or pathogen can be assayed by this approach, suggesting that further optimization of synthetic libraries holds promise for high throughput antigen discovery.

Details

Title
Discovery of T Cell Antigens by High-Throughput Screening of Synthetic Minigene Libraries
Author
Hondowicz, Brian D; Schwedhelm, Katharine V; Arnold Kas; Tasch, Michael A; Rawlings, Crystal; Ramchurren, Nirasha; McIntosh, Martin; D'Amico, Leonard A; Srinath Sanda; Standifer, Nathan E; Shendure, Jay; Stone, Brad
First page
e29949
Section
Research Article
Publication year
2012
Publication date
Jan 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1323071354
Copyright
© 2012 Hondowicz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.