Full text

Turn on search term navigation

© 2012 Cedervall et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nano-sized (10−9–10−7 m) particles offer many technical and biomedical advances over the bulk material. The use of nanoparticles in cosmetics, detergents, food and other commercial products is rapidly increasing despite little knowledge of their effect on organism metabolism. We show here that commercially manufactured polystyrene nanoparticles, transported through an aquatic food chain from algae, through zooplankton to fish, affect lipid metabolism and behaviour of the top consumer. At least three independent metabolic parameters differed between control and test fish: the weight loss, the triglycerides∶cholesterol ratio in blood serum, and the distribution of cholesterol between muscle and liver. Moreover, we demonstrate that nanoparticles bind to apolipoprotein A-I in fish serum in-vitro, thereby restraining them from properly utilising their fat reserves if absorbed through ingestion. In addition to the metabolic effects, we show that consumption of nanoparticle-containing zooplankton affects the feeding behaviour of the fish. The time it took the fish to consume 95% of the food presented to them was more than doubled for nanoparticle-exposed compared to control fish. Since many nano-sized products will, through the sewage system, end up in freshwater and marine habitats, our study provides a potential bioassay for testing new nano-sized material before manufacturing. In conclusion, our study shows that from knowledge of the molecular composition of the protein corona around nanoparticles it is possible to make a testable molecular hypothesis and bioassay of the potential biological risks of a defined nanoparticle at the organism and ecosystem level.

Details

Title
Food Chain Transport of Nanoparticles Affects Behaviour and Fat Metabolism in Fish
Author
Cedervall, Tommy; Lars-Anders Hansson; Lard, Mercy; Frohm, Birgitta; Linse, Sara
First page
e32254
Section
Research Article
Publication year
2012
Publication date
Feb 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1323851969
Copyright
© 2012 Cedervall et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.