Full Text

Turn on search term navigation

© 2012 Szwedowski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Bone adaptation after total hip arthroplasty is associated with the change in internal load environment, and can result in compromised bone stock, which presents a considerable challenge should a revision procedure be required. Under the assumption of a generic mechano-regulatory algorithm for governing bone adaptation, the aim of this study was to understand the contribution of subject specific loading conditions towards explaining the local periprosthetic remodelling variations in patients.

CT scans of 3 consecutive THA patients were obtained and used for the construction of subject specific finite element models using verified musculoskeletal loading and physiological boundary conditions. Using either strain energy density or equivalent strain as mechano-transduction signals, predictions of bone adaptation were compared to DEXA derived BMD changes from 7 days to 12 months post-implantation. Individual changes in BMD of up to 33.6% were observed within the 12 month follow-up period, together with considerable inter-patient variability of up to 26%. Estimates of bone adaptation using equivalent strain and balanced loading conditions led to the best agreement with in vivo measured BMD, with RMS errors of only 3.9%, 7.3% and 7.3% for the individual subjects, compared to errors of over 10% when the loading conditions were simplified.

This study provides evidence that subject specific loading conditions and physiological boundary constraints are essential for explaining inter-patient variations in bone adaptation patterns. This improved knowledge of the rules governing the adaptation of bone following THA helps towards understanding the interplay between mechanics and biology for better identifying patients at risk of excessive or problematic periprosthetic bone atrophy.

Details

Title
Generic Rules of Mechano-Regulation Combined with Subject Specific Loading Conditions Can Explain Bone Adaptation after THA
Author
Szwedowski, Tomasz D; Taylor, William R; Heller, Markus O; Perka, Carsten; Müller, Michael; Duda, Georg N
First page
e36231
Section
Research Article
Publication year
2012
Publication date
May 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1324607516
Copyright
© 2012 Szwedowski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.