Full text

Turn on search term navigation

© 2012 Olleros et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Several activities of the transmembrane form of TNF (memTNF) in immune responses to intracellular bacterial infection have been shown to be different from those exerted by soluble TNF. Evidence is based largely on studies in transgenic mice expressing memTNF, but precise cellular mechanisms are not well defined and the importance of TNF receptor regulation is unknown. In addition, memTNF activities are defined for a particular modification of the extracellular domain of TNF but a direct comparison of different mutant memTNF molecules has not been done in vivo.

Methodology

To understand the activities of memTNF we compared two commonly used mouse strains lacking soluble TNF but possessing functional and normally regulated membrane-bound TNF knockin (memTNF KI) for their capacity to generate cell-mediated immune responses and resistance to M. bovis BCG infection, and to regulate TNF receptors.

Principal Findings

M. bovis BCG infection resulted in similar bacterial loads in one strain of memTNF KI (memTNFΔ1–9,K11E) and in wild-type mice, in contrast, the other strain of memTNF KI mice (memTNFΔ1–12) showed higher sensitivity to infection with high mortality (75%), greater bacterial load and massive lung pathology. The pattern of cytokines/chemokines, inflammatory cells, pulmonary NF-κB phosphorylation, antigen-dependent IFN-γ response, and splenic iNOS was impaired in M. bovis BCG-infected memTNFΔ1–12 KI mice. Macrophages expressing TNFR2 were reduced but soluble TNFRs were higher in memTNFΔ1–12 KI mice during the infection. In vitro, M. bovis BCG-induced NF-κB activation and cytokines were also decreased in memTNFΔ1–12 KI bone marrow-derived macrophages.

Conclusion

Our data show that two memTNF molecules exerted very different activities upon M. bovis BCG infection resulting in protection or not to bacterial infection. These results suggest a regulatory mechanism of memTNF and TNF receptors being critical in the outcome of the infection and highlight the role of cell-bound and soluble TNFR2 in memTNF-mediated anti-microbial mechanisms.

Details

Title
Membrane-Bound TNF Induces Protective Immune Responses to M. bovis BCG Infection: Regulation of memTNF and TNF Receptors Comparing Two memTNF Molecules
Author
Olleros, Maria L; Vesin, Dominique; Bisig, Ruth; Santiago-Raber, Marie-Laure; Schuepbach-Mallepell, Sonia; Kollias, George; Gaide, Olivier; Garcia, Irene
First page
e31469
Section
Research Article
Publication year
2012
Publication date
May 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1325018855
Copyright
© 2012 Olleros et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.