Full Text

Turn on search term navigation

© 2013 Chu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The effects of stresscopin (SCP) on rat paraventricular nucleus (PVN) neurons were examined using whole-cell patch-clamp recordings and single-cell reverse-transcription multiplex polymerase chain reaction (SC-RT-mPCR) techniques. Under current-clamp conditions, bath application of SCP (100 nM) induced inhibition in 35.2% (37/105) of putative magnocellular neurons and 24.7% (20/81) of putative parvocellular neurons, and excitation in 5.7% (6/105) of putative magnocellular neurons and 18.5% (15/81) of putative parvocellular neurons. SCP-induced inhibition persisted in the presence of a mixture of TTX, a voltage-gated Na+ channel blocker, CNQX, an AMPA/kainate receptor antagonist and bicuculline, a GABAA receptor antagonist, whereas SCP-induced excitation of PVN neurons was reversed by the mixture. The SCP-induced inhibition of PVN neurons was abolished by bath application of antisauvagine-30, a selective CRF receptor 2 (CRF-R2) antagonist. Under voltage-clamp conditions, SCP evoked outward currents at the holding potential (−60 mV), which reversed near the potassium equilibrium potential. The SCP-evoked membrane currents were completely blocked by bath application of tertiapin-Q, a selective blocker of G protein-activated inwardly rectifying potassium (GIRK) channels. SC-RT-mPCR analysis indicated that all the SCP-sensitive PVN neurons (57 SCP-inhibited neurons, 21 SCP-excited neurons) expressed CRF-R1 and CRF-R2 mRNAs. Among SCP-hyperpolarized PVN neurons, oxytocin (OT) mRNA was detected in 91.8% of putative magnocellular neurons and 45.0% of putative parvocellular neurons. OT mRNA was also detected in 26.6% of SCP-depolarized parvocellular neurons, but not in SCP-depolarized magnocellular neurons. These results indicate that SCP inhibits a subpopulation of PVN neurons, especially OTergic magnocellular neurons, by enhancing the activity of GIRK channels via CRF-R2.

Details

Title
Effects of Stresscopin on Rat Hypothalamic Paraventricular Nucleus Neurons In Vitro
Author
Chun-Ping Chu; Wen-Zhe, Jin; Yan-Hua, Bing; Qing-Hua, Jin; Kannan, Hiroshi; De-Lai, Qiu
First page
e53863
Section
Research Article
Publication year
2013
Publication date
Jan 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1327257276
Copyright
© 2013 Chu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.