Full Text

Turn on search term navigation

© 2013 Song et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The stuttering interneurons (STi) represent one minor subset of interneuron population and exhibit characteristic stuttering firing upon depolarization current injection. While it has been long held that the GABAergic inhibitory transmission largely varies with the subtype identity of presynaptic interneurons, whether such a rule also applies to STi is largely unknown. Here, by paired recording of interneuron and their neighboring projection neuron in lateral amygdala, we found that relative to the fast spiking and late spiking interneurons, the STi-evoked unitary postsynaptic currents onto the projection neurons had markedly larger amplitude, shorter onset latency and faster rising and decay kinetics. The quantal content and the number of vesicles in the readily releasable pool were also larger in synapses made by STi versus other interneurons. Moreover, the short-term plasticity, as reflected by the paired pulse depression and depolarization-induced suppression of inhibition, was the least prominent in the output synapses of STi. Thus, the fast and robust inhibition together with its low capacity of short term modulation may suggest an important role for STi in preventing the overexcitation of the projection neurons and thus gating the information traffic in amygdala.

Details

Title
Stuttering Interneurons Generate Fast and Robust Inhibition onto Projection Neurons with Low Capacity of Short Term Modulation in Mouse Lateral Amygdala
Author
Chen, Song; Xiao-Bin, Xu; He, Ye; Zhi-Peng, Liu; Wang, Min; Zhang, Xin; Bao-Ming, Li; Bing-Xing Pan
First page
e60154
Section
Research Article
Publication year
2013
Publication date
Mar 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1330893495
Copyright
© 2013 Song et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.