Full text

Turn on search term navigation

© 2013 Park et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Phosphoinositide-dependent kinase 1 (PDK1) plays an important role in integrating the T cell antigen receptor (TCR) and CD28 signals to achieve efficient NF-κB activation. PDK1 is also an important regulator of T cell development, mediating pre-TCR induced proliferation signals. However, the role of PDK1 in B cell antigen receptor (BCR) signaling and B cell development remains largely unknown. In this study we provide genetic evidence supporting the role of PDK1 in B cell survival. We found PDK1 is required for BCR mediated survival in resting B cells, likely through regulation of Foxo activation. PDK1-dependent signaling to NF-κB is not crucial to resting B cell viability. However, PDK1 is necessary for triggering NF-κB during B cell activation and is required for activated B cell survival. Together these studies demonstrate that PDK1 is essential for BCR-induced signal transduction to Foxo and NF-κB and is indispensable for both resting and activated B cell survival.

Details

Title
The Kinase PDK1 Is Essential for B-Cell Receptor Mediated Survival Signaling
Author
Park, Sung-Gyoo; Long, Meixiao; Kang, Jung-Ah; Woo-Seok, Kim; Cho-Rong, Lee; Im, Sin-Hyeog; Strickland, Ian; Schulze-Luehrmann, Jan; Hayden, Matthew S; Ghosh, Sankar
First page
e55378
Section
Research Article
Publication year
2013
Publication date
Feb 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1340080122
Copyright
© 2013 Park et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.