It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: 10
Abstract
Background: Complex movement sequences are composed of segments with different levels of functionality: intended segments towards a goal and segments that spontaneously occur largely beneath our awareness. It is not known if these spontaneously-occurring segments could be informative of the learning progression in naïve subjects trying to skillfully master a new sport routine.
Methods: To address this question we asked if the hand speed variability could be modeled as a stochastic process where each trial speed depended on the speed of the previous trial. We specifically asked if the hand speed maximum from a previous trial could accurately predict the maximum speed of a sub-sequent trial in both intended and spontaneous movement segments. We further asked whether experts and novices manifested similar models, despite different kinematic dynamics and assessed the predictive power of the spontaneous fluctuations in the incidental motions.
Results: We found a simple power rule to parameterize speed variability for expert and novices with accurate predictive value despite randomly instructed speed levels and training contexts. This rule on average tended to yield similar exponent across speed levels for intended motion segments. Yet for the spontaneous segments the speed fluctuations had exponents that changed as a function of speed level and training context. Two conditions highlighted the expert performance: broad bandwidth of velocity-dependent parameter values and low noise-to-signal ratios that unambiguously distinguished between training regimes. Neither of these was yet manifested in the novices.
Conclusions: We suggest that the statistics of intended motions may be a predictor of overall expertise level, whereas those of spontaneously occurring incidental motions may serve to track learning progression in different training contexts. These spontaneous fluctuations may help the central systems to kinesthetically discriminate the peripheral re-afferent patterns of movement variability associated with changes in movement speed and training context. We further propose that during learning the acquisition of both broad bandwidth of speeds and low noise-to-signal ratios may be critical to build a verifiable kinesthetic (movement) percept and reach the type of automaticity that an expert acquires.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer