Abstract
In this paper, we propose a novel low-complexity interference-aware receiver structure for multi-user MIMO that is based on the exploitation of the structure of residual interference. We show that multi-user MIMO can deliver its promised gains in modern wireless systems in spite of the limited channel state information at the transmitter (CSIT) only if users resort to intelligent interference-aware detection rather than the conventional single-user detection. As an example, we focus on the long term evolution (LTE) system and look at the two important characteristics of the LTE precoders, i.e., their low resolution and their applying equal gain transmission (EGT). We show that EGT is characterized by full diversity in the single-user MIMO transmission but it loses diversity in the case of multi-user MIMO transmission. Reflecting on these results, we propose a LTE codebook design based on two additional feedback bits of CSIT and show that this new codebook significantly outperforms the currently standardized LTE codebooks for multi-user MIMO transmission.[PUBLICATION ABSTRACT]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





