Abstract
Hyperspectral imaging is a growing area in remote sensing in which an imaging spectrometer collects hundreds of images (at different wavelength channels) for the same area on the surface of the Earth. Hyperspectral images are extremely high-dimensional, and require on-board processing algorithms able to satisfy near real-time constraints in applications such as wildland fire monitoring, mapping of oil spills and chemical contamination, etc. One of the most widely used techniques for analyzing hyperspectral images is spectral unmixing, which allows for sub-pixel data characterization. This is particularly important since the available spatial resolution in hyperspectral images is typically of several meters, and therefore it is reasonable to assume that several spectrally pure substances (called endmembers in hyperspectral imaging terminology) can be found within each imaged pixel. There have been several efforts towards the efficient implementation of hyperspectral unmixing algorithms on architectures susceptible of being mounted onboard imaging instruments, including field programmable gate arrays (FPGAs) and graphics processing units (GPUs). While FPGAs are generally difficult to program, GPUs are difficult to adapt to onboard processing requirements in spaceborne missions due to its extremely high power consumption. In turn, with the increase in the number of cores, multi-core platforms have recently emerged as an easier to program platform compared to FPGAs, and also more tolerable radiation and power consumption requirements. However, a detailed assessment of the performance versus energy consumption of these architectures has not been conducted as of yet in the field of hyperspectral imaging, in which it is particularly important to achieve processing results in real-time. In this article, we provide a thoughtful perspective on this relevant issue and further analyze the performance versus energy consumption ratio of different processing chains for spectral unmixing when implemented on multi-core platforms.[PUBLICATION ABSTRACT]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





