Abstract
Doc number: 186
Abstract
Background: Miniature inverted repeat transposable elements (MITEs) are abundant non-autonomous elements, playing important roles in shaping gene and genome evolution. Their characteristic structural features are suitable for automated identification by computational approaches, however, de novo MITE discovery at genomic levels is still resource expensive. Efficient and accurate computational tools are desirable. Existing algorithms process every member of a MITE family, therefore a major portion of the computing task is redundant.
Results: In this study, redundant computing steps were analyzed and a novel algorithm emphasizing on the reduction of such redundant computing was implemented in MITE Digger. It completed processing the whole rice genome sequence database in ~15 hours and produced 332 MITE candidates with low false positive (1.8%) and false negative (0.9%) rates. MITE Digger was also tested for genome wide MITE discovery with four other genomes.
Conclusions: MITE Digger is efficient and accurate for genome wide retrieval of MITEs. Its user friendly interface further facilitates genome wide analyses of MITEs on a routine basis. The MITE Digger program is available at: http://labs.csb.utoronto.ca/yang/MITEDigger .
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer