Full Text

Turn on search term navigation

© 2013 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, et al. (2013) The Genomic Signature of Crop-Wild Introgression in Maize. PLoS Genet 9(5): e1003477. doi:10.1371/journal.pgen.1003477

Abstract

The evolutionary significance of hybridization and subsequent introgression has long been appreciated, but evaluation of the genome-wide effects of these phenomena has only recently become possible. Crop-wild study systems represent ideal opportunities to examine evolution through hybridization. For example, maize and the conspecific wild teosinte Zea mays ssp. mexicana (hereafter, mexicana) are known to hybridize in the fields of highland Mexico. Despite widespread evidence of gene flow, maize and mexicana maintain distinct morphologies and have done so in sympatry for thousands of years. Neither the genomic extent nor the evolutionary importance of introgression between these taxa is understood. In this study we assessed patterns of genome-wide introgression based on 39,029 single nucleotide polymorphisms genotyped in 189 individuals from nine sympatric maize-mexicana populations and reference allopatric populations. While portions of the maize and mexicana genomes appeared resistant to introgression (notably near known cross-incompatibility and domestication loci), we detected widespread evidence for introgression in both directions of gene flow. Through further characterization of these genomic regions and preliminary growth chamber experiments, we found evidence suggestive of the incorporation of adaptive mexicana alleles into maize during its expansion to the highlands of central Mexico. In contrast, very little evidence was found for adaptive introgression from maize to mexicana. The methods we have applied here can be replicated widely, and such analyses have the potential to greatly inform our understanding of evolution through introgressive hybridization. Crop species, due to their exceptional genomic resources and frequent histories of spread into sympatry with relatives, should be particularly influential in these studies.

Details

Title
The Genomic Signature of Crop-Wild Introgression in Maize
Author
Hufford, Matthew B; Lubinksy, Pesach; Pyhäjärvi, Tanja; Devengenzo, Michael T; Ellstrand, Norman C; Ross-Ibarra, Jeffrey
Section
Research Article
Publication year
2013
Publication date
May 2013
Publisher
Public Library of Science
ISSN
15537390
e-ISSN
15537404
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1368615758
Copyright
© 2013 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, et al. (2013) The Genomic Signature of Crop-Wild Introgression in Maize. PLoS Genet 9(5): e1003477. doi:10.1371/journal.pgen.1003477