Full text

Turn on search term navigation

© 2013 Cao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Strongly alkaline electrolyzed water (SAEW) was prepared by electrolysis of tap water in a laboratory-made water electrolyzer. The pH of stored SAEW was stable for more than one month. The hardness of the electrolyzed water was 30% lower and the Na+ concentration was 18% higher than those of the tap water. Silkworm cocoon shells were boiled in pH 11.50 SAEW at a ratio of 1∶40∼80 (W/V) for 20 min and the sericin layers around the silk fibroin fibers were removed completely. The tensile properties and thermal decomposition temperature of a single filament of silk fibroin obtained by the SAEW method were almost the same as those for the fiber obtained by the neutral soap, and much higher than those for the fiber obtained by Na2CO3 degumming. The results demonstrate that SAEW is an environmentally friendly and pollution-free silk degumming agent that allows highly efficient, low cost recovery of sericin.

Details

Title
Effect of Strongly Alkaline Electrolyzed Water on Silk Degumming and the Physical Properties of the Fibroin Fiber
Author
Ting-Ting, Cao; Yuan-Jing, Wang; Yu-Qing, Zhang
First page
e65654
Section
Research Article
Publication year
2013
Publication date
Jun 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1369305199
Copyright
© 2013 Cao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.