Content area

Abstract

Previous investigations have assumed that embryos lack the capacity of physiological thermoregulation until they are large enough for their own metabolic heat production to influence nest temperatures. Contrary to intuition, reptile embryos may be capable of physiological thermoregulation. In our experiments, egg-sized objects (dead or infertile eggs, water-filled balloons, glass jars) cooled down more rapidly than they heated up, whereas live snake eggs heated more rapidly than they cooled. In a nest with diel thermal fluctuations, that hysteresis could increase the embryo’s effective incubation temperature. The mechanisms for controlling rates of thermal exchange are unclear, but may involve facultative adjustment of blood flow. Heart rates of snake embryos were higher during cooling than during heating, the opposite pattern to that seen in adult reptiles. Our data challenge the view of reptile eggs as thermally passive, and suggest that embryos of reptile species with large eggs can influence their own rates of heating and cooling.

Details

1009240
Taxonomic term
Company / organization
Title
Can Reptile Embryos Influence Their Own Rates of Heating and Cooling?
Publication title
PLoS One; San Francisco
Volume
8
Issue
6
First page
e67095
Publication year
2013
Publication date
Jun 2013
Section
Research Article
Publisher
Public Library of Science
Place of publication
San Francisco
Country of publication
United States
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
Document type
Journal Article
ProQuest document ID
1370901055
Document URL
https://www.proquest.com/scholarly-journals/can-reptile-embryos-influence-their-own-rates/docview/1370901055/se-2?accountid=208611
Copyright
© 2013 Du et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-10-02
Database
ProQuest One Academic