It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: S10
Abstract
Background: Congenital muscular torticollis (CMT) is characterized by thickening and/or tightness of the unilateral sternocleidomastoid muscle (SCM), ending up with torticollis. Our aim was to identify differentially expressed genes (DEGs) and novel protein interaction network modules of CMT, and to discover the relationship between gene expressions and clinical severity of CMT.
Results: Twenty-eight sternocleidomastoid muscles (SCMs) from 23 subjects with CMT and 5 SCMs without CMT were allocated for microarray, MRI, or imunohistochemical studies. We first identified 269 genes as the DEGs in CMT. Gene ontology enrichment analysis revealed that the main function of the DEGs is for extracellular region part during developmental processes. Five CMT-related protein network modules were identified, which showed that the important pathway is fibrosis related with collagen and elastin fibrillogenesis with an evidence of DNA repair mechanism. Interestingly, the expression levels of the 8 DEGs called CMT signature genes whose mRNA expression was double-confirmed by quantitative real time PCR showed good correlation with the severity of CMT which was measured with the pre-operational MRI images (R2 ranging from 0.82 to 0.21). Moreover, the protein expressions of ELN, ASPN and CHD3 which were identified from the CMT-related protein network modules demonstrated the differential expression between the CMT and normal SCM.
Conclusions: We here provided an integrative analysis of CMT from gene expression to clinical significance, which showed good correlation with clinical severity of CMT. Furthermore, the CMT-related protein network modules were identified, which provided more in-depth understanding of pathophysiology of CMT.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer