[A & I plus PDF only]
COPYRIGHT: © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2013
Abstract
The impact of the earthquake and tsunami on the east coast of Japan on 11 March 2011 caused a loss of power at the Fukushima Dai-ichi nuclear power plant (NPP) that resulted in one of the most important releases of artificial radioactivity into the environment. Although several works were devoted to evaluating the atmospheric dispersion of radionuclides, the impact of the discharges to the ocean has been less investigated. Here we evaluate the distribution of Fukushima-derived 90 Sr (n = 57) and 89 Sr (n = 19) throughout waters 30-600 km offshore in June 2011. Concentrations of 90 Sr and 89 Sr in both surface waters and shallow profiles ranged from 0.8 ± 0.2 to 85 ± 3 Bq m-3 and from 19 ± 6 to 265 ± 74 Bq m-3 , respectively. Because of its short half-life, all measured 89 Sr was due to the accident, while the 90 Sr concentrations can be compared to the background levels in the Pacific Ocean of about 1.2 Bq m-3 . Fukushima-derived radiostrontium was mainly detected north of Kuroshio Current, as this was acting as a southern boundary for transport. The highest activities were associated with near-shore eddies, and larger inventories were found in the closest stations to Fukushima NPP. The data evidence a major influence of direct liquid discharges of radiostrontium compared to the atmospheric deposition. Existing 137 Cs data reported from the same samples allowed us to establish a 90 Sr / 137 Cs ratio of 0.0256 ± 0.0006 in seawater off Fukushima, being significantly different than that of the global atmospheric fallout (i.e., 0.63) and may be used in future studies to track waters coming from the east coast of Japan. Liquid discharges of 90 Sr to the ocean were estimated, resulting in an inventory of 53 ± 1 TBq of 90 Sr in the inshore study area in June 2011 and total releases of 90 Sr ranging from 90 to 900 TBq, depending upon the reported estimates of 137 Cs releases that are considered.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer