[A & I plus PDF only]
COPYRIGHT: © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2013
Abstract
Most of the hydrological and hydraulic studies refer to the notion of a return period to quantify design variables. When dealing with multiple design variables, the well-known univariate statistical analysis is no longer satisfactory, and several issues challenge the practitioner. How should one incorporate the dependence between variables? How should a multivariate return period be defined and applied in order to yield a proper design event? In this study an overview of the state of the art for estimating multivariate design events is given and the different approaches are compared. The construction of multivariate distribution functions is done through the use of copulas, given their practicality in multivariate frequency analyses and their ability to model numerous types of dependence structures in a flexible way. A synthetic case study is used to generate a large data set of simulated discharges that is used for illustrating the effect of different modelling choices on the design events. Based on different uni- and multivariate approaches, the design hydrograph characteristics of a 3-D phenomenon composed of annual maximum peak discharge, its volume, and duration are derived. These approaches are based on regression analysis, bivariate conditional distributions, bivariate joint distributions and Kendall distribution functions, highlighting theoretical and practical issues of multivariate frequency analysis. Also an ensemble-based approach is presented. For a given design return period, the approach chosen clearly affects the calculated design event, and much attention should be given to the choice of the approach used as this depends on the real-world problem at hand.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer