It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The penetration of granular materials is of interest to a variety of different fields, and is an active area of research. The objective of this project is to gain understanding of the dynamics of a projectile penetrating into a granular material. To do this, experiments were run and a numerical model was created.
A dart gun was used to accelerate an aluminum dart to velocities around 100 m/s, which then impacted a target tank filled with Ottawa sand. The dart flew along a view window, which allowed for a recording of the penetration event using a high speed camera. Pressure gauges inserted into the target tank measured the timing and magnitude of the compaction wave created by the dart. In these penetration events a two wave structure was discovered; a compaction wave and a fracture wave. The fracture wave is characterized by a white cone around the nose of the dart, which is created by increased reflectance from the newly created fracture surfaces in the grains of sand.
An experiment was conducted in which single grain of sand was crushed. From this experiment it was discovered that the phenomenon that creates increased reflectivity is the creation of fractures faces in the sand, and is not triboluminescence. Stress-strain data for the sand was also gathered, to be used in the numerical simulation. An ultrasonic pulser/receiver was used to gather data on the longitudinal and shear wave sound speeds through "as poured" Ottawa sand; 263 m/s and 209 m/s respectively. It was determined that the compaction and damage wave speeds were not related to either the longitudinal or shear wave speeds.
A numerical model was created using an EMU Peridynamic code. This code utilizes integral rather than differential equations, which allows for the modeling of crack propagation and fracture. The numerical simulations run were two-dimensional and on a smaller scale than the penetration experiments. The numerical simulation showed evidence of a compaction wave, force chain creation, and grain fracture, all of which were also observed in the penetration experiments.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer