Content area
Full text
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Networked control systems (NCSs) are the multiple feedback control loops closed via a serial communication channel. Compared with the traditional point-to-point control system, the advantages of NCSs are sharing of information resources, powerful system diagnosis, distributed remote control, modular design, configuration flexibility, and low cost [1–4]. As a result, NCSs have been widely used in national defense, aircraft, industrial automation, intelligent transportation, process control, and financial management [5]. And some useful results were reported on network protocol [6], network-induced delay [7–9], packet dropout [10–12], NCS structure [13], security [14, 15], scheduling [16–19], and network constraints [20].
It is notable that most of the aforementioned researches are focused on single-layer network structure; few results have been reported on NCSs with double-layer structure. As pointed out by [21, 22], a networked learning control system (NLCS) with double-layer structure can obtain better control performance and stronger robustness. Nonetheless, in real-time NLCS with limited network resources, random network-induced delay may have a significant impact on the performance and stability of the system [23]. The bandwidth availability is the major concern in many networking problems. A good schedule gives an appropriate resource allocation to network nodes and reduces packet collision. The performance of network applications is directly affected by the amount of available bandwidth and the sampling rate [24]. Therefore, the quality of service (QoS) and the quality of control (QoC) depend not only on the control algorithm and the system structure but also on the allocating and scheduling of the network resources. A more optimal allocation of the network bandwidth is the key to improve QoS and QoC. Due to the above discussion, bandwidth scheduling and optimizing is studied, based on the...
|