Full text

Turn on search term navigation

Copyright Nature Publishing Group Sep 2013

Abstract

Among the applications of optical phase measurement, the differential interference contrast microscope is widely used for the evaluation of opaque materials or biological tissues. However, the signal-to-noise ratio for a given light intensity is limited by the standard quantum limit, which is critical for measurements where the probe light intensity is limited to avoid damaging the sample. The standard quantum limit can only be beaten by using N quantum correlated particles, with an improvement factor of [SQRT]N. Here we report the demonstration of an entanglement-enhanced microscope, which is a confocal-type differential interference contrast microscope where an entangled photon pair (N=2) source is used for illumination. An image of a Q shape carved in relief on the glass surface is obtained with better visibility than with a classical light source. The signal-to-noise ratio is 1.35±0.12 times better than that limited by the standard quantum limit.

Details

Title
An entanglement-enhanced microscope
Author
Ono, Takafumi; Okamoto, Ryo; Takeuchi, Shigeki
Pages
2426
Publication year
2013
Publication date
Sep 2013
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1432306264
Copyright
Copyright Nature Publishing Group Sep 2013