Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Space systems play an integral role in every facet of our daily lives, including national security, communications, and resource management. Therefore, it is critical to protect our valuable assets in space and build resiliency in the space environment. In recent years, we have developed a novel approach to Space Situational Awareness (SSA), in the form of a low-resolution, Wide Field-of-View (WFOV) camera payload for attitude determination and Resident Space Object (RSO) detection. Detection is the first step in tracking, identification, and characterization of RSOs, including natural and artificial objects orbiting the Earth. A space-based dual-purpose camera that can provide attitude information alongside RSO detection can enhance the current SSA technologies which rely on ground infrastructure. A CubeSat form factor payload with real-time attitude determination and RSO detection algorithms was developed and flown onboard the CSA/CNES stratospheric balloon platform in August 2023. Sub-degree pointing information and multiple RSO detections were demonstrated during operation, with opportunities for improvement discussed. This paper outlines the hardware and software architecture, system design methodology, on-ground testing, and in-flight results of the dual-purpose camera payload.

Details

Title
A Dual-Purpose Camera for Attitude Determination and Resident Space Object Detection on a Stratospheric Balloon
Author
Chianelli, Gabriel; Kunalakantha, Perushan; Myhre, Marissa; Lee, Regina S K
First page
71
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2912784412
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.