It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition.
The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness.
Further development of practical combustion applications implementing microwave-assisted spark technology will benefit from predictive models which include the plasma processes governing the observed combustion enhancement. This dissertation documents the development of a chemical kinetic mechanism for the plasma-assisted combustion processes relevant to microwave-assisted spark ignition. The mechanism includes an existing mechanism for gas-phase methane oxidation, supplemented with electron impact reactions, cation and anion chemical reactions, and reactions involving vibrationally-excited and electronically-excited species. Calculations using the presently-developed numerical model explain experimentally-observed trends, highlighting the relative importance of pressure, temperature, and mixture composition in determining the effectiveness of microwave-assisted ignition enhancement.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
Supplemental files
Document includes 2 supplemental file(s). Download all files - Zip (414.5 KB)
Special programs or plug-ins may be required to view some files.
The supplemental file or files you are about to download were provided to ProQuest by the author as a part of a dissertation or thesis. The supplemental files are provided "AS IS" without any warranty. ProQuest is not responsible for the content, format or impact of the supplemental file(s) on your system. In some cases, the file type may be unknown or may be a .exe file. We recommend caution as you open such files.
Copyright of original materials contained in a supplemental files is retained by the author and your access to the supplemental files is subject to the ProQuest Terms and Conditions of use.
Downloading time depends on the size of the file(s) that you are downloading. System may take some time to download them.Please be patient.
The supplemental file or files you are about to download were provided to ProQuest by the author as a part of a dissertation or thesis. The supplemental files are provided "AS IS" without any warranty. ProQuest is not responsible for the content, format or impact of the supplemental file(s) on your system. In some cases, the file type may be unknown or may be a .exe file. We recommend caution as you open such files.
Copyright of original materials contained in a supplemental files is retained by the author and your access to the supplemental files is subject to the ProQuest Terms and Conditions of use.
Downloading time depends on the size of the file(s) that you are downloading. System may take some time to download them.Please be patient.