Full text

Turn on search term navigation

© 2013 Mao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Driver mutations are somatic mutations that provide growth advantage to tumor cells, while passenger mutations are those not functionally related to oncogenesis. Distinguishing drivers from passengers is challenging because drivers occur much less frequently than passengers, they tend to have low prevalence, their functions are multifactorial and not intuitively obvious. Missense mutations are excellent candidates as drivers, as they occur more frequently and are potentially easier to identify than other types of mutations. Although several methods have been developed for predicting the functional impact of missense mutations, only a few have been specifically designed for identifying driver mutations. As more mutations are being discovered, more accurate predictive models can be developed using machine learning approaches that systematically characterize the commonality and peculiarity of missense mutations under the background of specific cancer types. Here, we present a cancer driver annotation (CanDrA) tool that predicts missense driver mutations based on a set of 95 structural and evolutionary features computed by over 10 functional prediction algorithms such as CHASM, SIFT, and MutationAssessor. Through feature optimization and supervised training, CanDrA outperforms existing tools in analyzing the glioblastoma multiforme and ovarian carcinoma data sets in The Cancer Genome Atlas and the Cancer Cell Line Encyclopedia project.

Details

Title
CanDrA: Cancer-Specific Driver Missense Mutation Annotation with Optimized Features
Author
Mao, Yong; Chen, Han; Han, Liang; Meric-Bernstam, Funda; Mills, Gordon B; Chen, Ken
First page
e77945
Section
Research Article
Publication year
2013
Publication date
Oct 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1447630442
Copyright
© 2013 Mao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.