Full text

Turn on search term navigation

© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To assess the condition of cultural heritage assets for conservation, reality-based 3D models can be analyzed using FEA (finite element analysis) software, yielding valuable insights into their structural integrity. Three-dimensional point clouds obtained through photogrammetric and laser scanning techniques can be transformed into volumetric data suitable for FEA by utilizing voxels. When directly using the point cloud data in this process, it is crucial to employ the highest level of accuracy. The fidelity of r point clouds can be compromised by various factors, including uncooperative materials or surfaces, poor lighting conditions, reflections, intricate geometries, and limitations in the precision of the instruments. This data not only skews the inherent structure of the point cloud but also introduces extraneous information. Hence, the geometric accuracy of the resulting model may be diminished, ultimately impacting the reliability of any analyses conducted upon it. The removal of noise from point clouds, a crucial aspect of 3D data processing, known as point cloud denoising, is gaining significant attention due to its ability to reveal the true underlying point cloud structure. This paper focuses on evaluating the geometric precision of the voxelization process, which transforms denoised 3D point clouds into volumetric models suitable for structural analyses.

Details

Title
Testing the Effectiveness of Voxels for Structural Analysis
Author
Gonizzi Barsanti Sara  VIAFID ORCID Logo  ; Nappi, Ernesto  VIAFID ORCID Logo 
First page
349
Publication year
2025
Publication date
2025
Publisher
MDPI AG
e-ISSN
19994893
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3223864753
Copyright
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.