Abstract
The hydration and carbonation of olivine, the most common mineral on Earth, produce a large amount of heat. Unfortunately, the reaction is too slow for normal technological applications, but when thermally well isolated, most of this heat can be recovered, not only for space heating but even for the production of high-pressure steam. During the reaction, CO2 is sustainably sequestered. In this paper, a number of potential applications are described. Using the hydration and carbonation of olivine not only increases the energy production but also sequesters at the same time large volumes of CO2 that would otherwise be emitted, or would have to be removed by expensive technologies. The term supergreen fuel refers to the fact that this energy production is not associated with CO2 production, but quite the contrary, it even sequesters CO2 while producing energy. [PUBLICATION ABSTRACT]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




