Full text

Turn on search term navigation

© 2014 Cheng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Objective

Resting-state functional MRI (rsfMRI) has been increasingly used for understanding brain functional architecture. To date, most rsfMRI studies have exploited blood oxygenation level-dependent (BOLD) contrast using gradient-echo (GE) echo planar imaging (EPI), which can suffer from image distortion and signal dropout due to magnetic susceptibility and inherent long echo time. In this study, the feasibility of passband balanced steady-state free precession (bSSFP) imaging for distortion-free and high-resolution rsfMRI was investigated.

Methods

rsfMRI was performed in humans at 3 T and in rats at 7 T using bSSFP with short repetition time (TR = 4/2.5 ms respectively) in comparison with conventional GE-EPI. Resting-state networks (RSNs) were detected using independent component analysis.

Results and Significance

RSNs derived from bSSFP images were shown to be spatially and spectrally comparable to those derived from GE-EPI images with considerable intra- and inter-subject reproducibility. High-resolution bSSFP images corresponded well to the anatomical images, with RSNs exquisitely co-localized to the gray matter. Furthermore, RSNs at areas of severe susceptibility such as human anterior prefrontal cortex and rat piriform cortex were proved accessible. These findings demonstrated for the first time that passband bSSFP approach can be a promising alternative to GE-EPI for rsfMRI. It offers distortion-free and high-resolution RSNs and is potentially suited for high field studies.

Details

Title
Resting-State fMRI Using Passband Balanced Steady-State Free Precession
Author
Cheng, Joe S; Gao, Patrick P; Zhou, Iris Y; Chan, Russell W; Chan, Queenie; Mak, Henry K; Khong, Pek L; Wu, Ed X
First page
e91075
Section
Research Article
Publication year
2014
Publication date
Mar 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1506819733
Copyright
© 2014 Cheng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.