[A & I plus PDF only]
COPYRIGHT: © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2014
Abstract
Phytoplankton light absorption properties were investigated at the surface and subsurface chlorophyll a maximum (SCM) layer in the East China Sea (ECS), a marginal sea which is strongly influenced by the Changjiang discharge in summer. Results from ECS were compared with those from the Tsushima Strait (TS) where the influence of Changjiang discharge is less. The probable controlling factors, packaging effect (cell size) and pigment composition of total chlorophyll a (Tchl a)-specific absorption coefficient (aph* (λ)) were examined by the corresponding measurements of pigments identified by high-performance liquid chromatography. We observed distinct phytoplankton size structure and thereby absorption properties between ECS and TS. At the surface, mixed populations of micro-, nano- and pico-phytoplankton were recorded in ECS while pico-phytoplankton dominated in TS, generating a lower average aph* (λ) in ECS than in TS. Within SCM, average aph* (λ) was higher in ECS than in TS because of the dominance of nano- and micro-phytoplankton in ECS and TS, respectively. By pooling surface and SCM samples, we found regular trends in phytoplankton size-fraction versus Tchl a; and correlations between aph* (λ) and Tchl a consistent with previous observations for the global ocean in TS but not in ECS. In ECS phytoplankton size-fraction was not correlated with Tchl a, which consequently caused poor relationships between aph* (λ) and Tchl a. The abnormal values mainly originated from the surface low-salinity waters and SCM waters beneath them. At high Tchl a, aph* (λ) of these samples was substantially higher compared to the values in TS and from the global regressions, which was attributable to the lower micro-phytoplankton fraction, and higher nano- and/or pico-phytoplankton fractions in ECS. These observations indicated that the distinct light absorption properties of phytoplankton in ECS were possibly influenced by the Changjiang discharge. Our findings imply that general bio-optical algorithms proposed based on the correlations between aph* (λ) and Tchl a or the patterns in size-fraction versus Tchl a are not applicable in ECS, and need to be carefully considered when using these general algorithms in river-influenced regions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer