It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Materials with apatite structure have attracted interest due to their versatile applications from medical diagnostics and drug delivery to energy and fuel cells. Apatites have flexible structures that can accommodate a range of elements and dopants (in terms of both size and charge) in two distinct crystallographic cation sites and consequently, exhibit fascinating defect chemistry. Recently, several different properties have been engineered into apatite structures by varying their doping schemes. However, advancement of these properties for various material applications needs a fundamental understanding of stability and sustainability of apatites under various conditions. A systematic thermodynamic study can provide insights to understanding structure - composition - property - stability relations as well as guidance to predict, prepare, and select optimized materials for specific desired applications. The lack of knowledge of thermodynamic stabilities in apatite systems with different dopants and doping levels was the motivation behind this study on apatite materials with various compositions and stoichiometry. For this study, a unique and powerful high temperature oxide melt solution calorimetry technique was used to obtain energetics of lanthanide silicate/germanate and calcium phosphate materials with non-doped and doped divalent and trivalent cations. Apatites with composition Ln9.33+x(TO4)6O2+3x/2 (Ln = lanthanide and T = Si and/or Ge), have been proposed as a new group of candidate materials for electrolytes at the intermediate temperature (~600 ˚C) in solid oxide fuel cells (SOFCs). The enthalpies of formation of these materials from oxides were determined to investigate a relationship between the stability and the structural defects (cation vacancy and intestinal oxygen). For the lanthanide silicate group, we found that formation of vacancies and oxide interstitials destabilize the apatite structure and vacancy formation appears to be a dominate factor. Both lanthanide cation and tetrahedral anion sizes were found to affect the stability of this system. Substitution of La with Nd and Si with Ge separately in lanthanide silicate apatites shows that the structure becomes more stable with an increase in the lanthanide cation radius and a decrease in the tetrahedral-site cation radius. Another apatite system, calcium phosphate hydroxyapatite doped with lanthanides, has gathered attention for its luminescent properties and its potential as a drug carrier for the delivery of a variety of pharmaceutical molecules. The enthalpies of formation of calcium phosphate hydroxyapatite, Ca10-x-yLny(PO4)6-x(HPO4)x(OH)2-x-yOy.nH2O (Ln = lanthanides), was investigated using high temperature oxide melt solution calorimetry. Energetic results show that the enthalpies of formation become linearly less exothermic with increase in concentration as well as the size of the dopant lanthanide. The calorimetric studies have revealed the existence of distinctive energetic trends with defects formation and interactions in different doped apatite systems. These fundamental thermodynamic studies could help to understand the structure - property - stability relations in apatite-type materials. These results could guide processing, application and sustainability of apatite type materials in both the energy and biotechnology industry.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer