Full Text

Turn on search term navigation

© 2014 Abdul Roda et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A novel neutrophil chemoattractant derived from collagen, proline-glycine-proline (PGP), has been recently characterized in chronic obstructive pulmonary disease (COPD). This peptide is derived via the proteolytic activity of matrix metalloproteases (MMP's)-8/9 and PE, enzymes produced by neutrophils and present in COPD serum and sputum. Valproic acid (VPA) is an inhibitor of PE and could possibly have an effect on the severity of chronic inflammation. Here the interaction site of VPA to PE and the resulting effect on the secondary structure of PE is investigated. Also, the potential inhibition of PGP-generation by VPA was examined in vitro and in vivo to improve our understanding of the biological role of VPA. UV- visible, fluorescence spectroscopy, CD and NMR were used to determine kinetic information and structural interactions between VPA and PE. In vitro, PGP generation was significantly inhibited by VPA. In vivo, VPA significantly reduced cigarette-smoke induced neutrophil influx. Investigating the molecular interaction between VPA and PE showed that VPA modified the secondary structure of PE, making substrate binding at the catalytic side of PE impossible. Revealing the molecular interaction VPA to PE may lead to a better understanding of the involvement of PE and PGP in inflammatory conditions. In addition, the model of VPA interaction with PE suggests that PE inhibitors have a great potential to serve as therapeutics in inflammatory disorders.

Details

Title
Targeting Prolyl Endopeptidase with Valproic Acid as a Potential Modulator of Neutrophilic Inflammation
Author
Mojtaba Abdul Roda; Sadik, Mariam; Gaggar, Amit; Hardison, Matthew T; Jablonsky, Michael J; Braber, Saskia; Blalock, James Edwin; Redegeld, Frank A; Folkerts, Gert; Jackson, Patricia L
First page
e97594
Section
Research Article
Publication year
2014
Publication date
May 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1525342688
Copyright
© 2014 Abdul Roda et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.