It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The term NSAID refers to structurally diverse chemical compounds that share the ability to inhibit the activity of the prostaglandin (PG) biosynthetic enzymes, the cyclooxygenase (COX) isoforms 1 and 2. The suppression of PG synthesis at sites of inflammation has been regarded as primarily responsible for the beneficial properties of NSAIDs, but several COX-independent effects have been described in recent years. Epidemiological studies indicate that NSAIDs are neuroprotective, although the mechanisms underlying their beneficial effect remain largely unknown. Microglial cells play a major role in brain inflammation and are often viewed as major contributors to the neurodegeneration. Therefore, microglia represent a likely target for NSAIDs within the brain. In the present review, we focused on the direct effects of NSAIDs and selective COX-2 inhibitors on microglial functions and discuss the potential efficacy in controlling brain inflammation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer