Full text

Turn on search term navigation

Copyright Nature Publishing Group May 2014

Abstract

Receptor tyrosine kinases (RTKs) are increasingly recognized as having the capacity to signal post-internalization. Signalling outputs and/or duration, and subsequent cellular outcome, are thought to be distinct when emanating from endosomes compared with those from the plasma membrane. Here we show, in invasive, basal-like human breast cell models, that different mechanisms are engaged by the RTK c-Met in two different endosomes to control the actin cytoskeleton via the key migratory signal output Rac1. Despite an acute activation of Rac1 from peripheral endosomes (PEs), c-Met needs to traffic to a perinuclear endosome (PNE) to sustain Rac1 signalling, trigger optimal membrane ruffling, cell migration and invasion. Unexpectedly, in the PNE but not in the PE, PI3K and the Rac-GEF Vav2 are required. Thus we describe a novel endosomal signalling mechanism whereby one signal output, Rac1, is stimulated through distinct pathways by the same RTK depending on which endosome it is localized to in the cell.

Details

Title
Receptor tyrosine kinase c-Met controls the cytoskeleton from different endosomes via different pathways
Author
Ménard, Ludovic; Parker, Peter J; Kermorgant, Stéphanie
Pages
3907
Publication year
2014
Publication date
May 2014
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1525780103
Copyright
Copyright Nature Publishing Group May 2014