It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The solvatochromic characteristics of flavone and 7-hydroxyflavone were investigated in neat and binary solvent mixtures. The spectral shifts of these solutes were correlated with the Kamlet and Taft parameters (α, β and π*) using linear solvation energy relationships. The multiparametric analysis indicates that both specific hydrogen bond donor ability and non-specific dipolar interactions of the solvents play an important role in absorption maxima of flavone in pure solvents. The hydrogen bond acceptor ability of the solvent was the main parameter affecting the absorption maxima of 7-hydroxyflavone. The simulated absorption spectra using a TD-DFT method were in good agreement with the experimental ones for both flavones. Index of preferential solvation was calculated as a function of solvent composition. Preferential solvation by ethanol was detected in cyclohexane-ethanol and acetonitrile-ethanol mixtures for flavone and in acetonitrile-ethanol mixtures for 7-hydroxyflavone. These results indicate that intermolecular hydrogen bonds between solute and solvent are responsible for the non-linear variation of the solvatochromic shifts on the mole fraction of ethanol in the analyzed binary mixtures.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer