Abstract

Maternal exposure to social stress during pregnancy is associated with an increased risk of psychiatric disorders in the offspring in later life. However, the mechanism through which the effects of maternal stress are transmitted to the foetus is unclear. Using a rat model, we explored the mechanisms by which maternal social stress is conveyed to the foetus and the potential for targeted treatment to prevent disease in the offspring. Maternal stress increased circulating corticosterone in the mother, but not the foetuses. Maternal stress also induced oxidative stress in the placenta, but not in the foetal brain, and this was prevented by administration of a nanoparticle-bound antioxidant. Moreover, antioxidant treatment prevented prenatal stress-induced anxiety-like behaviour in the adult male offspring, along with several stress-induced neuroanatomical, neurochemical and gene expression changes in the offspring brain. Importantly, many of these neural effects were mimicked in neuronal cultures by application of placental-conditioned medium or foetal plasma from stressed pregnancies. Both placental-conditioned medium and foetal plasma contained differentially abundant extracellular microRNAs following prenatal stress. The present study highlights the crucial role of the placenta, and the molecules it secretes, in foetal brain development and provides evidence of the potential for treatment that can prevent maternal stress-induced foetal programming of neurological disease.

Details

Title
Maternal antioxidant treatment prevents behavioural and neural changes in offspring exposed to prenatal social stress
Author
Scott, Hannah; Phillips, Thomas J; Sze, Ying; Alfieri, Alessio; Rogers, Mark F; Case, Charles Patrick; Brunton, Paula J
University/institution
Cold Spring Harbor Laboratory Press
Section
New Results
Publication year
2019
Publication date
Jul 14, 2019
Publisher
Cold Spring Harbor Laboratory Press
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
ProQuest document ID
2257449504
Copyright
© 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.