Abstract
Network traffic modeling significantly affects various considerations in networking, including network resource allocation, quality of service provisioning, network traffic management, congestion control, and bandwidth efficiency. These are very important issues in network protocol design, too. In this paper, a comprehensive comparison of modeling approaches of adaptive neuro fuzzy inference system (ANFIS) and autoregressive integrated moving average (ARIMA) for modeling of wireless network traffic in terms of typical statistical indicator and computational complexity has been attempted. ARIMA has been widely used in this area for past many years. On the other hand, ANFIS is comparatively new, and no network traffic modeling using ANFIS was attempted until recently to the best of our knowledge. At the same time, a detailed comparative performance evaluation of ANFIS with other modeling approaches in traffic modeling could not be found in existing literature. Reportedly, ANFIS provides a good precision in prediction in terms of statistical indicators and also gives effective description of network conditions at different times. However, the computational complexity of ANFIS for traffic modeling is a major concern and deserves a closer inspection. In our case of wireless network traffic, as a final result, we find that ANFIS model performs better than the best ARIMA model in three different scenarios.[PUBLICATION ABSTRACT]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





