It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Mild inhibition of mitochondrial respiration leads to longevity. Disruption of mitochondrial respiratory components extends lifespan in Caenorhabditis elegans, but the effects appear to be complex and the underlying mechanism for lifespan regulation by mitochondrial respiratory genes is still not fully understood. Here, we investigated the role of Y82E9BR.3, a worm homolog of the ATP synthase subunit C, in modulating longevity in C. elegans. We found that the Y82E9BR.3 protein is localized in mitochondria and expressed in various tissues throughout development. RNAi knockdown of Y82E9BR.3 extends lifespan, decreases the accumulation of lipofuscin, and affects various physiological processes, including development delay, reproduction impairment and slow behavior. Further tissue-specific RNAi analysis showed that the intestine is a crucial organ for the longevity effects conferred by Y82E9BR.3 RNAi. Moreover, we demonstrated that lifespan extension by Y82E9BR.3 RNAi is associated with reduced mitochondrial function, as well as the suppression of complex I activity in mitochondria. Unexpectedly, Y82E9BR.3 RNAi knock down did not influence the whole-worm ATP level. Our findings first reveal the crucial role of Y82E9BR.3 in mitochondrial function and the underlying mechanism of how Y82E9BR.3 regulates lifespan in C. elegans.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
2 Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
3 Brain Research Core Facilities, Korea Brain Research Institute, Daegu, South Korea
4 Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea; Department of IT Convergence and Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea