Full text

Turn on search term navigation

© 2014 Zheng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background & Aims

Hepatitis B surface antigen (HBsAg) seroclearance and seroconversion are regarded as favorable outcomes of chronic hepatitis B (CHB). This study aimed to develop artificial neural networks (ANNs) that could accurately predict HBsAg seroclearance or seroconversion on the basis of available serum variables.

Methods

Data from 203 untreated, HBeAg-negative CHB patients with spontaneous HBsAg seroclearance (63 with HBsAg seroconversion), and 203 age- and sex-matched HBeAg-negative controls were analyzed. ANNs and logistic regression models (LRMs) were built and tested according to HBsAg seroclearance and seroconversion. Predictive accuracy was assessed with area under the receiver operating characteristic curve (AUROC).

Results

Serum quantitative HBsAg (qHBsAg) and HBV DNA levels, qHBsAg and HBV DNA reduction were related to HBsAg seroclearance (P<0.001) and were used for ANN/LRM-HBsAg seroclearance building, whereas, qHBsAg reduction was not associated with ANN-HBsAg seroconversion (P = 0.197) and LRM-HBsAg seroconversion was solely based on qHBsAg (P = 0.01). For HBsAg seroclearance, AUROCs of ANN were 0.96, 0.93 and 0.95 for the training, testing and genotype B subgroups respectively. They were significantly higher than those of LRM, qHBsAg and HBV DNA (all P<0.05). Although the performance of ANN-HBsAg seroconversion (AUROC 0.757) was inferior to that for HBsAg seroclearance, it tended to be better than those of LRM, qHBsAg and HBV DNA.

Conclusions

ANN identifies spontaneous HBsAg seroclearance in HBeAg-negative CHB patients with better accuracy, on the basis of easily available serum data. More useful predictors for HBsAg seroconversion are still needed to be explored in the future.

Details

Title
Artificial Neural Network Accurately Predicts Hepatitis B Surface Antigen Seroclearance
Author
Ming-Hua, Zheng; Wai-Kay Seto; Ke-Qing Shi; Danny Ka-Ho Wong; Fung, James; Ivan Fan-Ngai Hung; Fong, Daniel Yee-Tak; Yuen, John Chi-Hang; Tong, Teresa; Ching-Lung Lai; Man-Fung, Yuen
First page
e99422
Section
Research Article
Publication year
2014
Publication date
Jun 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1534520937
Copyright
© 2014 Zheng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.