Abstract

In this study the isolated compound 11-dehydrosinulariolide from soft coral Sinularia leptoclados possessed anti-proliferative, anti-migratory and apoptosis-inducing activities against A2058 melanoma cells. Anti-tumor effects of 11-dehydrosinulariolide were determined by MTT assay, cell migration assay and flow cytometry. Growth and migration of melanoma cells were dose-dependently inhibited by 2-8 μg/mL 11-dehydrosinulariolide. Flow cytometric data indicated that 11-dehydrosinulariolide induces both early and late apoptosis in melanoma cells. It was found that the apoptosis induced by 11-dehydrosinulariolide is relevant to mitochondrial-mediated apoptosis via caspase-dependent pathways, elucidated by loss of mitochondrial membrane potential ([increment]Ym), release of cytochrome C, activation of caspase-3/-9 and Bax as well as suppression of Bcl-2/Bcl-xL. The cleavage of PARP-1 suggested partial involvement of caspase-independent pathways. Immunoblotting data displayed up-regulations of PERK/eIF2α/ATF4/CHOP and ATF6/CHOP coupling with elevation of ER stress chaperones GRP78, GRP94, calnexin, calreticulin and PDI, implicating the involvement of these factors in ER stress-mediated apoptosis induced by 11-dehydrosinulariolide. The abolishment of apoptotic events after pre-treatment with salubrinal indicated that ER stress-mediated apoptosis is also induced by 11-dehydrosinulariolide against melanoma cells. The data in this study suggest that 11-dehydrosinulariolide potentially induces apoptosis against melanoma cells via mitochondrial dysregulation and ER stress pathways.

Details

Title
Induction of Apoptosis by 11-Dehydrosinulariolide via Mitochondrial Dysregulation and ER Stress Pathways in Human Melanoma Cells
Author
Su, Tzu-Rong; Tsai, Feng-Jen; Lin, Jen-Jie; Huang, Han Hsiang; Chiu, Chien-Chih; Su, Jui-Hsin; Yang, Ya-Ting; Chen, Jeff Yi-Fu; Wong, Bing-Sang; Wu, Yu-Jen
Pages
1883-1898
Publication year
2012
Publication date
2012
Publisher
MDPI AG
e-ISSN
16603397
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1536005439
Copyright
Copyright MDPI AG 2012